Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.412
Filtrar
1.
Neurobiol Sleep Circadian Rhythms ; 16: 100103, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38585223

RESUMEN

Day length, or photoperiod, is a reliable environmental cue encoded by the brain's circadian clock that indicates changing seasons and induces seasonal biological processes. In humans, photoperiod, age, and sex have been linked to seasonality in neuropsychiatric disorders, as seen in Seasonal Affective Disorder, Major Depressive Disorder, and Bipolar Disorder. The nucleus accumbens is a key locus for the regulation of motivated behaviors and neuropsychiatric disorders. Using periadolescent and young adult male and female mice, here we assessed photoperiod's effect on serotonin and dopamine tissue content in the nucleus accumbens core, as well as on accumbal synaptic dopamine release and uptake. We found greater serotonin and dopamine tissue content in the nucleus accumbens from young adult mice raised in a Short winter-like photoperiod. In addition, dopamine release and clearance were greater in the nucleus accumbens from young adult mice raised in a Long summer-like photoperiod. Importantly, we found that photoperiod's effects on accumbal dopamine tissue content and release were sex-specific to young adult females. These findings support that in mice there are interactions across age, sex, and photoperiod that impact critical monoamine neuromodulators in the nucleus accumbens which may provide mechanistic insight into the age and sex dependencies in seasonality of neuropsychiatric disorders in humans.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38581143

RESUMEN

Efficient post-drought recovery of growth and assimilation enables a plant to return to its undisturbed state and functioning. Unlike annual plants, trees suffer not only from the current drought, but also from cumulative impacts of consecutive water stresses which cause adverse legacy effects on survival and performance. This review provides an integrated assessment of ecological, physiological and molecular evidence on the recovery of growth and photosynthesis in trees, with a view to informing the breeding of trees with a better ability to recover from water stress. Suppression of recovery processes can result not only from stress damage but also from a controlled downshift of recovery as part of tree acclimation to water-limited conditions. In the latter case, recovery processes could potentially be activated by turning off the controlling mechanisms, but several obstacles make this unlikely. Tree phenology, and specifically photoperiodic constraints, can limit post-drought recovery of growth and photosynthesis, and targeting these constraints may represent a promising way to breed trees with an enhanced ability to recover post-drought. The mechanisms of photoperiod-dependent regulation of shoot, secondary and root growth and of assimilation processes are reviewed. Finally, the limitations and trade-offs of altering the photoperiodic regulation of growth and assimilation processes are discussed.

3.
Chronobiol Int ; 41(4): 548-560, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38557404

RESUMEN

Chronic consumption of a high-calorie diet coupled with an altered sleep-wake cycle causes disruption of circadian clock that can impact the gut microbiome leading to metabolic syndrome and associated diseases. Herein, we investigate the effects of a high fat high fructose diet (H) alone or in combination with photoperiodic shifts induced chronodisruption (CD) on gut microbiota of C57BL/6J male mice. Further, the merits of daily evening intraperitoneal administration of melatonin in restoring gut microbiota are studied herein. Experimental groups viz. H, CD and HCD mice recorded higher levels of serum pro-inflammatory cytokines (TNF-α and IL-6) and lower levels of the anti-inflammatory cytokine, IL-10. These findings correlate with a concomitant increase in the transcripts of TLR4, TNF-α, and IL-6 in small intestine of the said groups. A decrement in mRNA levels of Ocln, ZO-1 and Vdr in these groups implied towards an altered gut permeability. These results were in agreement with the observed decrement in percentage abundance of total gut microflora and Firmicutes: Bacteroidetes (F/B) ratio. Melatonin administration accounted for lower-level inflammation (serum and gut) along with an improvement in gut permeability markers. The total abundance of gut microflora and F/B ratio showed an improvement in all the melatonin-treated groups and the same is the highlight of this study. Taken together, our study is the first to report perturbations in gut microbiota resulting due to a combination of photoperiodic shifts induced CD and a high fat high calorie diet-induced lifestyle disorder. Further, melatonin-mediated rejuvenation of gut microbiome provides prima facie evidence of its role in improving gut dysbiosis that needs a detailed scrutiny.


Asunto(s)
Ritmo Circadiano , Dieta Alta en Grasa , Microbioma Gastrointestinal , Melatonina , Ratones Endogámicos C57BL , Animales , Melatonina/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Masculino , Ritmo Circadiano/fisiología , Ratones , Citocinas/metabolismo , Fotoperiodo , Inflamación
4.
Trop Anim Health Prod ; 56(3): 125, 2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38613714

RESUMEN

Photoperiod manipulation is emerging as an effective approach for regulating physiological functions in fish. This study aimed to assess the impact of photoperiod on the growth performance, haematological responses, and economic returns of the endangered and highly valued Indian butter catfish, Ompok bimaculatus. Fish with an average body weight of 28.60 ± 4.78 g were randomly placed in six FRP tanks, each measuring 120 × 45 × 60 cm3. Each tank contained 20 fish exposed to a light intensity of 1500 lx under different photoperiods [24:0 light: dark (L: D), 15 L: 9D, 12 L: 12D, 9 L: 15D, 0 L: 24D and a natural photoperiod (control)], and fed at a daily rate of 2% of their body weight twice daily for 60 days. The fish in the 15 L: 9D photoperiod exhibited the highest final weight (g), percentage weight gain, specific growth rate (SGR) and survival rate, while the lowest was displayed in 24 L: 0D photoperiod group. The feed conversion ratio (FCR) was at its lowest in the catfish subjected to the 15 L: 9D photoperiod. Regarding haematological parameters, the 15 L: 9D photoperiod group showed higher total erythrocyte count, total leukocyte count, haemoglobin levels, and haematocrit values compared to the other groups. Conversely, the 0 L: 24D group, which experienced prolonged darkness, exhibited the lowest values in these parameters. Moreover, the 24 L: 0D, 9 L: 15D, and 0 L: 24D groups displayed a lower mean corpuscular volume (MCV) but higher mean corpuscular haemoglobin (MCH) and mean corpuscular haemoglobin concentration (MCHC) when compared to the control group. The economic analysis revealed that O. bimaculatus reared in a moderate photoperiod (15 L: 9D) displayed better growth, feed utilization, and overall health. This finding suggests that adopting a 15 L: 9D photoperiod can lead to enhanced production and improved economic returns for farmers culturing this high-value catfish in the future.


Asunto(s)
Bagres , Animales , Fotoperiodo , Peso Corporal , Índices de Eritrocitos/veterinaria , Hematócrito/veterinaria
5.
Methods Mol Biol ; 2795: 17-23, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38594523

RESUMEN

Hypocotyl elongation in Arabidopsis is widely utilized as a readout for phytochrome B (phyB) signaling and thermomorphogenesis. Hypocotyl elongation is gated by the circadian clock and, therefore, it occurs at distinct times depending on day length or seasonal cues. In short-day conditions, hypocotyl elongation occurs mainly at the end of nighttime when phyB reverts to the inactive form. In contrast, in long-day conditions, hypocotyl elongation occurs during the daytime when phyB is in the photoactivated form. Warm temperatures can induce hypocotyl growth in both long-day and short-day conditions. However, the corresponding daytime and nighttime temperature responses reflect distinct underpinning mechanisms. Here, we describe assays for dissecting the mechanisms between daytime and nighttime thermoresponsive hypocotyl elongation.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Relojes Circadianos , Arabidopsis/metabolismo , Hipocótilo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Fitocromo B/metabolismo , Luz
6.
Agron Sustain Dev ; 44(3): 25, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38660316

RESUMEN

Sorghum production system in the semi-arid region of Africa is characterized by low yields which are generally attributed to high rainfall variability, poor soil fertility, and biotic factors. Production constraints must be well understood and quantified to design effective sorghum-system improvements. This study uses the state-of-the-art in silico methods and focuses on characterizing the sorghum production regions in Mali for drought occurrence and its effects on sorghum productivity. For this purpose, we adapted the APSIM-sorghum module to reproduce two cultivated photoperiod-sensitive sorghum types across a latitude of major sorghum production regions in Western Africa. We used the simulation outputs to characterize drought stress scenarios. We identified three main drought scenarios: (i) no-stress; (ii) early pre-flowering drought stress; and (iii) drought stress onset around flowering. The frequency of drought stress scenarios experienced by the two sorghum types across rainfall zones and soil types differed. As expected, the early pre-flowering and flowering drought stress occurred more frequently in isohyets < 600 mm, for the photoperiod-sensitive, late-flowering sorghum type. In isohyets above 600 mm, the frequency of drought stress was very low for both cultivars. We quantified the consequences of these drought scenarios on grain and biomass productivity. The yields of the highly-photoperiod-sensitive sorghum type were quite stable across the higher rainfall zones > 600 mm, but was affected by the drought stress in the lower rainfall zones < 600 mm. Comparatively, the less photoperiod-sensitive cultivar had notable yield gain in the driest regions < 600 mm. The results suggest that, at least for the tested crop types, drought stress might not be the major constraint to sorghum production in isohyets > 600 mm. The findings from this study provide the entry point for further quantitative testing of the Genotype × Environment × Management options required to optimize sorghum production in Mali. Supplementary Information: The online version contains supplementary material available at 10.1007/s13593-023-00909-5.

7.
J Circadian Rhythms ; 22: 2, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38617710

RESUMEN

Chronobiology investigations have revealed much about cellular and physiological clockworks but we are far from having a complete mechanistic understanding of the physiological and ecological implications. Here we present some unresolved questions in circadian biology research as posed by the editorial staff and guest contributors to the Journal of Circadian Rhythms. This collection of ideas is not meant to be comprehensive but does reveal the breadth of our observations on emerging trends in chronobiology and circadian biology. It is amazing what could be achieved with various expected innovations in technologies, techniques, and mathematical tools that are being developed. We fully expect strengthening mechanistic work will be linked to health care and environmental understandings of circadian function. Now that most clock genes are known, linking these to physiological, metabolic, and developmental traits requires investigations from the single molecule to the terrestrial ecological scales. Real answers are expected for these questions over the next decade. Where are the circadian clocks at a cellular level? How are clocks coupled cellularly to generate organism level outcomes? How do communities of circadian organisms rhythmically interact with each other? In what way does the natural genetic variation in populations sculpt community behaviors? How will methods development for circadian research be used in disparate academic and commercial endeavors? These and other questions make it a very exciting time to be working as a chronobiologist.

8.
J Circadian Rhythms ; 22: 1, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38617711

RESUMEN

Circadian Biology intersects with diverse scientific domains, intricately woven into the fabric of organismal physiology and behavior. The rhythmic orchestration of life by the circadian clock serves as a focal point for researchers across disciplines. This retrospective examination delves into several of the scientific milestones that have fundamentally shaped our contemporary understanding of circadian rhythms. From deciphering the complexities of clock genes at a cellular level to exploring the nuances of coupled oscillators in whole organism responses to stimuli. The field has undergone significant evolution lately guided by genetics approaches. Our exploration here considers key moments in the circadian-research landscape, elucidating the trajectory of this discipline with a keen eye on scientific advancements and paradigm shifts.

9.
Heliyon ; 10(7): e28531, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38586380

RESUMEN

Improvement of sugarcane is hampered due to its narrow genetic base, and the difficulty in synchronizing flowering further hinders the exploitation of the genetic potential of available germplasm resources. Therefore, the continuous evaluation and optimization of flowering control and induction techniques are vital for sugarcane improvement. In view of this, the review was conducted to investigate the current understanding of photoperiodic and lighting treatment effects on sugarcane flowering and its genetic regulation. Photoperiod facilities have made a significant contribution to flowering control in sugarcane; however, inductive photoperiods are still unknown for some genotypes, and some intended crosses are still impossible to produce because of unresponsive varieties. The effectiveness of lower red/far-red ratios in promoting sugarcane flowering has been widely understood. Furthermore, there is vast potential for utilizing blue, red, and far-red light wavelengths in the flowering control of sugarcane. In this context, light-emitting diodes (LEDs) remain efficient sources of light. Therefore, the combined use of photoperiod regimes with different light wavelengths and optimization of such treatment combinations might help to control and induce flowering in sugarcane parental clones. In sugarcane, FLOWERING LOCUS T (ScFT) orthologues from ScFT1 to ScFT13 have been identified, and interestingly, ScFT3 has evidently been identified as a floral inducer in sugarcane. However, independent assessments of different FT-like gene family members are recommended to comprehensively understand their role in the regulation of flowering. Similarly, we believe this review provides substantial information that is vital for the manipulation of flowering and exploitation of germplasm resources in sugarcane breeding.

10.
Plant J ; 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38526880

RESUMEN

Rice (Oryza sativa L.) is a short-day plant whose heading date is largely determined by photoperiod sensitivity (PS). Many parental lines used in hybrid rice breeding have weak PS, but their F1 progenies have strong PS and exhibit an undesirable transgressive late-maturing phenotype. However, the genetic basis for this phenomenon is unclear. Therefore, effective methods are needed for selecting parents to create F1 hybrid varieties with the desired PS. In this study, we used bulked segregant analysis with F1 Ningyou 1179 (strong PS) and its F2 population, and through analyzing both parental haplotypes and PS data for 918 hybrid rice varieties, to identify the genetic basis of transgressive late maturation which is dependent on dominance complementation effects of Hd1, Ghd7, DTH8, and PRR37 from both parents rather than from a single parental genotype. We designed a molecular marker-assisted selection system to identify the genotypes of Hd1, Ghd7, DTH8, and PRR37 in parental lines to predict PS in F1 plants prior to crossing. Furthermore, we used CRISPR/Cas9 technique to knock out Hd1 in Ning A (sterile line) and Ning B (maintainer line) and obtained an hd1-NY material with weak PS while retaining the elite agronomic traits of NY. Our findings clarified the genetic basis of transgressive late maturation in hybrid rice and developed effective methods for parental selection and gene editing to facilitate the breeding of hybrid varieties with the desired PS for improving their adaptability.

11.
Plant Cell ; 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38513610

RESUMEN

How does a plant detect the changing seasons and make important developmental decisions accordingly? How do they incorporate daylength information into their routine physiological processes? Photoperiodism, or the capacity to measure the daylength, is a crucial aspect of plant development that helps plants determine the best time of the year to make vital decisions, such as flowering. The protein CONSTANS (CO) constitutes the central regulator of this sensing mechanism, not only activating florigen production in the leaves but also participating in many physiological aspects in which seasonality is important. Recent discoveries place CO in the center of a gene network that can determine the length of the day and confer seasonal input to aspects of plant development and physiology as important as senescence, seed size, or circadian rhythms. In this review, we discuss the importance of CO protein structure, function, and evolutionary mechanisms that embryophytes have developed to incorporate annual information into their physiology.

12.
Chronobiol Int ; 41(3): 329-346, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38516993

RESUMEN

The light/dark cycle, known as the photoperiod, plays a crucial role in influencing various physiological activities in fish, such as growth, feeding and reproduction. However, the underlying mechanisms of this influence are not fully understood. This study focuses on exploring the impact of different light regimes (LD: 12 h of light and 12 h of darkness; LL: 24 h of light and 0 h of darkness; DD: 0 h of light and 24 h of darkness) on the expression of clock genes (LcClocka, LcClockb, LcBmal, LcPer1, LcPer2) and the secretion of hormones (melatonin, GnRH, NPY) in the large yellow croaker, Larimichthys crocea. Real-time quantitative PCR (RT-qPCR) and enzyme-linked immunosorbent assays were utilized to assess how photoperiod variations affect clock gene expression and hormone secretion. The results indicate that changes in photoperiod can disrupt the rhythmic patterns of clock genes, leading to phase shifts and decreased expression. Particularly under LL conditions, the pineal LcClocka, LcBmal and LcPer1 genes lose their rhythmicity, while LcClockb and LcPer2 genes exhibit phase shifts, highlighting the importance of dark phase entrainment for maintaining rhythmicity. Additionally, altered photoperiod affects the neuroendocrine system of L. crocea. In comparison to the LD condition, LL and DD treatments showed a phase delay of GnRH secretion and an acceleration of NPY synthesis. These findings provide valuable insights into the regulatory patterns of circadian rhythms in fish and may contribute to optimizing the light environment in the L. crocea farming industry.


Asunto(s)
Melatonina , Perciformes , Glándula Pineal , Animales , Ritmo Circadiano/fisiología , Fotoperiodo , Glándula Pineal/metabolismo , Melatonina/metabolismo , Expresión Génica , Perciformes/genética , Perciformes/metabolismo , Hormona Liberadora de Gonadotropina/genética , Hormona Liberadora de Gonadotropina/metabolismo
13.
Plant J ; 2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38491864

RESUMEN

Photoperiod employs complicated networks to regulate various developmental processes in plants, including flowering transition. However, the specific mechanisms by which photoperiod affects epigenetic modifications and gene expression variations in plants remain elusive. In this study, we conducted a comprehensive analysis of DNA methylation, small RNA (sRNA) accumulation, and gene expressions under different daylengths in facultative long-day (LD) grass Brachypodium distachyon and short-day (SD) grass rice. Our results showed that while overall DNA methylation levels were minimally affected by different photoperiods, CHH methylation levels were repressed under their favorable light conditions, particularly in rice. We identified numerous differentially methylated regions (DMRs) that were influenced by photoperiod in both plant species. Apart from differential sRNA clusters, we observed alterations in the expression of key components of the RNA-directed DNA methylation pathway, DNA methyltransferases, and demethylases, which may contribute to the identified photoperiod-influenced CHH DMRs. Furthermore, we identified many differentially expressed genes in response to different daylengths, some of which were associated with the DMRs. Notably, we discovered a photoperiod-responsive gene MYB11 in the transcriptome of B. distachyon, and further demonstrated its role as a flowering inhibitor by repressing FT1 transcription. Together, our comparative and functional analysis sheds light on the effects of daylength on DNA methylation, sRNA accumulation, and gene expression variations in LD and SD plants, thereby facilitating better designing breeding programs aimed at developing high-yield crops that can adapt to local growing seasons.

14.
Bioresour Technol ; 399: 130613, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38513922

RESUMEN

This study investigated the impacts of various culture temperatures and light regimes on growth and biochemical constituents of Chlamydomonas reinhardtii under carbon-supply and nitrogen-limited conditions to improve oil production in algal cells. Results displayed that under a 30 ℃ and 150 µE/m2/s regime, there was a significant increase in biomass, total lipids, and lipid productivity. Specifically, these parameters reached 1.83 g/L, 36.25 %, and 130.73 mg/L/d, respectively. Remarkably, prolonging the photoperiod further enhanced the aforementioned three parameters, reaching peak levels of 1.92 g/L, 41.10 %, and 157.54 mg/L/d, respectively, recorded at a 24/0h photoperiod. Compared with cultures grown under normal conditions, these values displayed increments of 1.21-fold, 74.88 %, and 3.01-fold, respectively. Additionally, under optimal conditions, the soluble sugar content reached 79.72 mg/g, and the biodiesel properties were improved. These findings indicate that moderately increasing temperature, light intensity, and photoperiod could achieve the co-production of biomass, lipids, and sugars in C. reinhardtii.


Asunto(s)
Chlamydomonas reinhardtii , Microalgas , Lípidos , Temperatura , Biomasa , Carbono , Luz , Nitrógeno
15.
Mar Environ Res ; 197: 106477, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38554488

RESUMEN

Photoperiod and temperature are two main factors in the growth of macroalgae, and changes in photoperiod and diurnal temperature difference exist in natural condition. In order to study the effects of photoperiod and diurnal temperature difference on the growth of green algae Ulva prolifera, we cultured this species under three light/dark cycles (light: dark = 10:14, 12:12 and 16:08) with constant (22 °C for light and dark period, noted as 22-22 °C) and diurnal temperature difference (22 °C and 16 °C for light and dark period, respectively, noted as 22-16 °C) conditions. The results showed that: 1) Compared with 10:14 light/dark cycle, the growth of U. prolifera under 12:12 light/dark cycle was significantly enhanced by 39% and 16% for 22-22 °C and 22-16 °C treatments, respectively, while the increase proportion decreased when the daylength increase from 12 h to 16 h. 2) The enhancement in growth induced by diurnal temperature difference was observed under 10:14 light/dark cycle, but not for 12:12 and 16:08 light/dark cycle treatments. 3) The Chl a content and photosynthetic rate increased under short light period and 22-22 °C conditions, while under 22-16 °C conditions, higher photosynthetic rate was observed under 12:12 light/dark cycle and no significant difference in Chl a content was observed. 4) Under 22-22 °C conditions, compared with 10:14 (L:D) treatment, the expression levels of proteins in light-harvesting complexes, PSII and carbon fixation were down regulated, while the photorespiration and pentose phosphate pathway (PPP) were up regulated by 16:08 light dark cycle. Then we speculate that the higher photosynthetic rate may be one compensation mechanism in short photoperiod, and under long light period condition the up regulations of photorespiration and PPP can be in charge of the decrease in enhancement growth induced by longer daylength.


Asunto(s)
60578 , Fotoperiodo , Ulva , Temperatura , Fotosíntesis/fisiología
16.
J Environ Manage ; 356: 120595, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38520851

RESUMEN

Direct discharge of mariculture wastewater can lead to eutrophication, posing a threat to aquatic ecosystems. A novel Bacteria-Algae Coupled Reactor (BACR) offers advantages in treating mariculture wastewater, which can effectively remove pollutants while simultaneously obtaining microalgal products. However, there is limited information available on how illumination affects the cultivation of mixotrophic microalgae in this bacteria-algae coupling system. Therefore, a combined strategy of photoperiod and light intensity regulation was employed to improve the biological mariculture wastewater remediation, promote microalgae biomass accumulation, and increase the high-value product yield in this study. Optimal light conditions could effectively enhance microalgal carbohydrate, protein, lipid accumulation and photosynthetic activity, with the carbohydrate, protein and lipid contents reached 44.11, 428.57 and 399.68 mg/L, respectively. Moreover, excellent removal rates were achieved for SCOD, NH4+-N and TP, reaching 86.68%, 87.35% and 95.13% respectively. This study proposes a comprehension of BACR processes in mariculture wastewater under different light conditions.


Asunto(s)
Microalgas , Aguas Residuales , Ecosistema , Fotoperiodo , Nutrientes , Biomasa , Microalgas/metabolismo , Bacterias/metabolismo , Carbohidratos , Lípidos , Nitrógeno/metabolismo
17.
Trends Plant Sci ; 2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38494370

RESUMEN

In controlled environment agriculture (CEA), light is used to impact terpenoid production and improve plant quality. In this review we discuss various aspects of light as important regulators of terpenoid production in different plant organs. Spectral quality primarily modifies terpenoid profiles, while intensity and photoperiod influence abundances. The central regulator of light signal transduction elongated hypocotyl 5 (HY5) controls transcriptional regulation of terpenoids under UV, red (R), and blue (B) light. The larger the fraction of R and green (G) light, the more beneficial the effect on monoterpenoid and sesquiterpenoid biosynthesis, and such an effect may depend on the presence of B light. A large fraction of R light is mostly detrimental to tetraterpenoid production. We conclude that light is a promising tool to steer terpenoid production and potentially tailor the quality of plants.

18.
BMC Plant Biol ; 24(1): 210, 2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38519909

RESUMEN

BACKGROUND: Different metabolic compounds give pepper leaves and fruits their diverse colors. Anthocyanin accumulation is the main cause of the purple color of pepper leaves. The light environment is a critical factor affecting anthocyanin biosynthesis. It is essential that we understand how to use light to regulate anthocyanin biosynthesis in plants. RESULT: Pepper leaves were significantly blue-purple only in continuous blue light or white light (with a blue light component) irradiation treatments, and the anthocyanin content of pepper leaves increased significantly after continuous blue light irradiation. This green-to-purple phenotype change in pepper leaves was due to the expression of different genes. We found that the anthocyanin synthesis precursor-related genes PAL and 4CL, as well as the structural genes F3H, DFR, ANS, BZ1, and F3'5'H in the anthocyanin synthesis pathway, had high expression under continuous blue light irradiation. Similarly, the expression of transcription factors MYB1R1-like, MYB48, MYB4-like isoform X1, bHLH143-like, and bHLH92-like isoform X3, and circadian rhythm-related genes LHY and COP1, were significantly increased after continuous blue light irradiation. A correlation network analysis revealed that these transcription factors and circadian rhythm-related genes were positively correlated with structural genes in the anthocyanin synthesis pathway. Metabolomic analysis showed that delphinidin-3-O-glucoside and delphinidin-3-O-rutinoside were significantly higher under continuous blue light irradiation relative to other light treatments. We selected 12 genes involved in anthocyanin synthesis in pepper leaves for qRT-PCR analysis, and the accuracy of the RNA-seq results was confirmed. CONCLUSIONS: In this study, we found that blue light and 24-hour irradiation together induced the expression of key genes and the accumulation of metabolites in the anthocyanin synthesis pathway, thus promoting anthocyanin biosynthesis in pepper leaves. These results provide a basis for future study of the mechanisms of light quality and photoperiod in anthocyanin synthesis and metabolism, and our study may serve as a valuable reference for screening light ratios that regulate anthocyanin biosynthesis in plants.


Asunto(s)
Capsicum , Transcriptoma , Antocianinas/metabolismo , Capsicum/genética , Capsicum/metabolismo , 60440 , Metaboloma , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Isoformas de Proteínas/metabolismo , Regulación de la Expresión Génica de las Plantas
19.
eNeuro ; 11(4)2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38548332

RESUMEN

Long-term programmed rheostatic changes in physiology are essential for animal fitness. Hypothalamic nuclei and the pituitary gland govern key developmental and seasonal transitions in reproduction. The aim of this study was to identify the molecular substrates that are common and unique to developmental and seasonal timing. Adult and juvenile quail were collected from reproductively mature and immature states, and key molecular targets were examined in the mediobasal hypothalamus (MBH) and pituitary gland. qRT-PCR assays established deiodinase type 2 (DIO2) and type 3 (DIO3) expression in adults changed with photoperiod manipulations. However, DIO2 and DIO3 remain constitutively expressed in juveniles. Pituitary gland transcriptome analyses established that 340 transcripts were differentially expressed across seasonal photoperiod programs and 1,189 transcripts displayed age-dependent variation in expression. Prolactin (PRL) and follicle-stimulating hormone subunit beta (FSHß) are molecular markers of seasonal programs and are significantly upregulated in long photoperiod conditions. Growth hormone expression was significantly upregulated in juvenile quail, regardless of photoperiodic condition. These findings indicate that a level of cell autonomy in the pituitary gland governs seasonal and developmental programs in physiology. Overall, this paper yields novel insights into the molecular mechanisms that govern developmental programs and adult brain plasticity.


Asunto(s)
Hipotálamo , Yoduro Peroxidasa , Animales , Estaciones del Año , Yoduro Peroxidasa/genética , Yoduro Peroxidasa/metabolismo , Hipotálamo/metabolismo , Ritmo Circadiano , Fotoperiodo , Aves/metabolismo
20.
Poult Sci ; 103(4): 103413, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38442558

RESUMEN

Photoperiod is an important environmental factor that influences seasonal reproduction behavior in birds. Birds translate photoperiodic information into neuroendocrine signals through deep brain photoreceptors (DBPs). OPN5 has been considered candidate DBPs involved in regulating seasonal reproduction in birds. We found that OPN5 could mediate light to regulate the follicle development in ducks. In this study, we further verified the effect of OPN5 on follicular development in Shan Partridge ducks by immunizing against the extracellular domain (ECD) of OPN5. We investigated the specific regulatory mechanism of photoperiod mediated by OPN5 on the reproductive activity of ducks. The trial randomly divided 120 Shan Partridge ducks into 3 groups with different treatments: the immunization of OPN5 group was done at d0, d15, d30, and d40 with 1 mL of vaccine containing OPN5 protein (thus containing 1, 1, 0.5, and 0.5 mg of OPN5-KLH protein), and the control group (CS and CL groups) was injected at the same time with the same dose of OPN5-uncontained blank vaccine. The group of CS (900 lux), OPN5 (600 lux), and CL (600 lux) lasted for 40 d in 12 L:12 D photoperiods, respectively. Then, the groups of CS, OPN5, and CL subsequently received 12 L:12 D, 12 L:12 D, and 17 L:7 D light treatments for 33 d, respectively. The ducks were caged in 3 constant rooms with the same feeding conditions for each group, free water, and limited feeding (150 g per duck each day). Duck serum and tissue samples were collected at d 40, d 62, and d 73 (n = 12). It was found that before prolonged light, the group of immunization (group OPN5) and the group of strong light intensity (group CS) were higher than the group of CL in egg production. Subsequent to prolonged light, the group CL in egg production rose about the same as the group immunization, while the strong light group (group CS) was lower. Group OPN5 increased the ovarian index of ducks, and both the immunization of group OPN5 and group CL (extended light) increased the thickness of the granular layer and promoted the secretion of E2, P4, LH, and PRL hormones. Compared with group CS, group CL and OPN5 increased the mRNA level and protein expression of OPN5 in the hypothalamus on d 62 and d 73 (P < 0.05). The gene or protein expression patterns of GnRH, TRH, TSHß, DIO2, THRß, VIP, and PRL were positively correlated with OPN5, whereas the gene expression patterns of GnIH and DIO3 were negatively correlated with OPN5. The results showed that immunization against OPN5 could activate the corresponding transmembrane receptors to promote the expression of OPN5, up-regulate the expression of TSHß and DIO2, and then regulate the HPG axis-related genes to facilitate the follicular development of Shan Partridge ducks. In addition, in this experiment, prolonging the photoperiod or enhancing the light intensity could also enhance follicle development, but the effect was not as significant as immunizing against OPN5. Our results will offer beneficial data and more supportive shreds of evidence in favor of elucidating the role of OPN5 in relation to photoperiods and reproduction.


Asunto(s)
Fotoperiodo , Vacunas , Animales , Patos/fisiología , Pollos , Reproducción , Inmunización/veterinaria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...